
to rus  exceeds  by p rac t i ca l ly  a fac tor  of two its value for  a cyl indr ica l  explosion; the exper imenta l  r e s u l t s  con-  
f i r m  the tendency toward  an i nc r ea s e  of the pulsat ion per iod upon an Inc rea se  in the rad ius  of the r ing;  and 

d) accord ing  to the expe r imen ta l  data,  as the r ad ius  of the r i n g d e c r e a s e s  (with fulf i l lment  of the condition 
of mainta ining the toro ida l  na tu re  of the cavity),  the f rac t ion  of energy  n e c e s s a r y  for  the shock wave inc rea se s  
and amounts  to p rac t i ca l ly  90% for  a value a 0 ~" 150; as  the rad ius  of the r ing  i n c r e a s e s ,  the energy  ba lance  ap-  
p roaches  the data for  an explosion with cyl indr ica l  s y m m e t r y .  

The r e s u l t s  p resen ted  for  our invest igat ions con f i rm  the p rac t i cab i l i ty  of the method proposed in this 
paper  and the pulsat ion equation (2.5) obtained on this bas i s  for  a toro ida l  cavi ty  in a c o m p r e s s i b l e  liquid. 

The author is gra tefu l  to V. T. Kuzavov for  a s s i s t a n c e  in conducting the exper iments .  
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In this a r t i c l e  the one-ve loc i ty ,  t w o - p r e s s u r e  model  of a two-phase  mix tu re  [1] is used in conjunction with 
the heat -conduct ion equation for  the in ter ior  of bubbles in a bubb l e - l i qu id  mix tu re  to desc r ibe  the s t r u c t u r e  of 
a shock wave in such a mixture .  

Shock waves  in a liquid containing gas bubbles have been invest igated theore t ica l ly  and exper imenta l ly  
[1-4]. The s t ruc tu re  of a shock wave in such a med ium has been  studied with al lowance for  the compre s s ib i l i t y  
of the host  phase  as  well  as  two-veloc i ty  and t w o : t e m p e r a t u r e  effects  [5], and it has been shown In the s a m e  
work that in the case  of t h e r m a l  nonequi l ibr ium the ro le  of two-ve loc i ty  effects  becomes  inconsequential  against  
the background of the much s t ronge r  t h e r m a l  diss ipat ion.  In this connection the p resen t  d iscuss ion is f r a m e d  
in the one-ve loc i ty  model  for s impl i f ica t ion  [6]. The object ive  of the p resen t  study is to re f ine  the r e su l t s  of 
[6] and to t es t  the appl icabi l i ty  of the fixed h e a t - t r a n s f e r  coeff icient  or  Nussel t  number  de te rmined  f r o m  the 
approximat ion  of a thin t h e r m a l  boundary  layer  to the ca se  of nonsteady heat t r a n s f e r  between a pulsat ing bubble 

and the host  liquid. 

w 1. F u n d a m e n t a l  E q u a t i o n s  

We consider  the motion of a liquid in which gas bubbles  a r e  suspended and for  which  the following bas ic  
assumpt ions  a r e  made [1]: 1) The dis tances  over  which the flow p a r a m e t e r s  exper ience  any apprec iab le  v a r i a -  
tion a r c  much g r ea t e r  than the d is tances  between bubbles ,  and the la t ter  d is tances  in turn a r e  much g r ea t e r  
than the bubbles t h e m s e l v e s  (i.e., the contents by volume a 2 of the gas phase  a r e  smal l ,  a 2< 0.1); 2) the mix tu re  
is monod i spe r se ,  i .e. ,  in every  e l e m e n t a r y  volume al l  the bubbles a r e  spher i ca l  and have the s a m e  rad ius  R; 
3) v i scos i ty  and heat conduction a r e  essen t ia l  only in in te rphase  p r o c e s s e s  and, in pa r t i cu la r ,  during bubble 
pulsat ions.  
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Moreover ,  it is a s s u m e d  that  z e ro  m a s s  t r a n s f e r  t akes  place between phases  and the t e m p e r a t u r e  T 1 of 
the liquid {unlike the t e m p e r a t u r e  of the gas in the bubble inter ior)  is constant.  The la t te r  condition (T 1 = 
coast} is a lways sa t i s f ied  for  not too high p r e s s u r e s ,  on account  of the predominant  m a s s  content of the liquid 
(which functions as  a thermosta t} ,  and s impl i f ies  the p r o b l e m  grea t ly  because  it obviates  the need to analyze 
the ene rgy  equation for  the liquid. 

Calculat ions have shown [7] that even for  ve ry  s t rong  bubble c o m p r e s s i o n  (pe/P0 ~ 10), such that  the 
cen te r  of the bubble a t ta ins  high t e m p e r a t u r e s  (of the gas}, the t e m p e r a t u r e  Tcr of the bubble stir face inc reases  
ordy sl ight ly (Tcr ~ 1.1 T0). The p r e s s u r e  in the bubble in this case  a t ta ins  values  v e r y  much g rea t e r  than the 
par t ia l  v a p o r - s a t u r a t i o n  p r e s s u r e  co r respond ing  to such values  of the bubble su r face  t e m p e r a t u r e .  This fact  
lends suppor t  to the a s sumpt ion  of inconsequential  [n terphase  m a s s  t r ans fe r .  

Fo r  the given mix tu re ,  working  within the notions of continuum theory  and following Noordzij [1], we 
wr i t e  the d i f ferent ia l  equat ions for  the conserva t ion  of m a s s  of each  phase  and conserva t ion  of momen tum of 
the total  mix tu re  in one -d imens iona l ,  s t e ady - s t a t e  motion:  

d ( p l u ) / d x  = O, d ( p ~ v } / d x  = 0, (1.1} 
" 0  p~= P~at, i = t , 2 ,  r  

(Pl 3- p . , ) vdv /dx  =- - -  d l h l d x ,  

where  the subsc r ip t  i =1, 2 r e f e r s  the cor responding  p a r a m e t e r s  to the liquid and gas,  r e spec t ive ly ;  ~i,  Pi, Ps 
and p [ a r e  the contents  by vo lume,  p r e s s u r e ,  ave r age  density,  and t rue  densi ty  ef~ the i - th  phase;  and v is the 
veloci ty .  We take as  the equations of s ta te  of the phases  

p~ = (y - -  t}cv,p~ uz -= cv ,  T,., p0 = coast, (1.2) 

where  c V , u2, T2, and T a r e  the specif ic  heat at constant  volume,  specif ic  in ternal  energy,  t e m p e r a t u r e ,  and 
adiabat ic  2exponent of the gas.  

Ins tead of the equation used  in [61 for the heat  input to the second phase we use the heat-conduct ion equa-  
tiion for  the bubble in te r io r :  

0 4 

= (1.a  

where  Cl~ is the spec i f ic  heat of the gas at  constant  p r e s s u r e ;  y is the spher i ca l  Euler  coordinate ,  0 _~y _<R{t); 
a-2 is the t h e r m a l  conductivi ty of the gas; and r is the Lagrangian coordinate ,  0 _~  _<R 0. The subscr ip t  0 r e f e r s  
to the equi l ibr ium s ta te  ahead of the wave. For  smal l  volume contents of the gas ~ ~. < 0.1) and not ve ry  s t rong  
shocks (Pe/P0< 10}, as  shown in [7], the boundary  condition on the bubble su r face  can be s ta ted in the f o r m  
~P=fR, t) =To, s ince the liquid has a m u c h  g r e a t e r  t he rma l  conductivity and a much s m a l l e r  t h e r m a l  diffusivity 
than the gas.  

The equation of continuity for  the gas in Lagrangtan coordinates  is 

ay P~ (1.4) 
e~ p%, 

The p r e s s u r e  in the bubble is a s s u m e d  to be homogeneous (homobar tc i ty  condition [7]); this condition is 
guaranteed  when the r ad ia l  ve loc i ty  of the bubble walls  is well  below the veloci ty  of sound in the gas.  

It will be helpful in what follows to use  the p r e s s u r e  different ial  equation obtained as the integral  of Eq. 
(1.3) subjec t  to the a b o v e - s t a t e d  as sumpt ions  and boundary conditions: 

v d p 2 / d x  = --  [3(y - -  l)/R tqa - -  ( 3 g P ~ / R ) v d R / d x ,  " (1.5) 

where  qR i s  the heat  flux f r o m  the bubble into the liquid. 

The gas p r e s s u r e s  and rad i i  of the bubbles mus t  be r e l a t ed  by a deformat ion  compat ib i l i ty  condition. 
Such a condition in the given case  is the 1Rayleigh equation for  pulsat ions of a single spher ica l  bubble in an un- 
'bounded i ncompres s i b l e  liquid. For  the case  in question it has the f o r m  

R v d w / d x  3-  3iv"-~2 3-  4 v ~ w / R = ( p ~  - -  P i  - -  2 ~ / R ) / P  ~ (1.6) 

~ J R . ' d x  = w.  

where  w is the r ad ia l  ve loci ty  of the bubble wall  and ~ i, a a r e  the v i scos i ty  coeff icient  of the liquid and the co-  
efficient  of su r face  tension.  
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The sys t em of equations is closed. We t r ans fo rm to dimensionless var iables  and p a r a m e t e r s :  

P i  PJP2o, V = v / a . ,  W =  w / a . ,  a2. = P~o/P~o, (1.7) 

X = X/Bo,  ~l = ~/Ro,  r = R / R o ,  ~ - -  y / R  o, 

Oi = T / T o ,  S = 2o/Bop~0, • ---- v~/Boa., 
M~ p~/p~, M~ ~ o o o o . = = p2oa~o/PioCho, z~ = pi/p~o. 

The sys t em has f i rs t  integrals  deduced f rom (1.1): 

~IV = ~176176 z2~ : a i ~ 1 7 6  (1.8) 

aloV0 V (1 + M~o) + Pt = cqoV~ (t + M.,o) + P~o" 

It is essent ial  to note that a bubble s t ruc ture  exists for  ~ 2 ~ 0.1, while at moderate  p re s su res  ~ ~  10 to 
30 bars)  the ra t io  of the t rue  densities of the phases (p~) /p  ~ << 1 (for p = 1 bar ,  the rat io ( p O ) / p  ~ ,,, 10 ). In this 
case  the m a s s  content of gas can be neglected in compar i son  with unity, because 

M~o = (p~ 0 /p~ 0 (a2) << 0(a:) << t. (1.9) 

Using (1.7) and (1.9), we obtain f rom (1.3)-(1.6) a sys t em of equations in the dimensionless var iables  

d r / d X  = W / V ,  86/0~ = ( ll/8)Uz2; (1.10) 

d W / d X  = ( P2 - -  P l  - -  t,5 W2 --"Sir - -  4 x W / r ) / r V ;  (1.11) 

d P o / d X  == - -  (3(? -- l ) /P2oa ,  rV)q  R - -  ( 3?P~/r)dr /dx;  (1.12) 

dO s D2raz 2 0 [%54 008\  7 - - t  dP2 
d X  aoa, V~ ~ o~ ('~'ff -a-~} + T r 3 �9 (1.13) 

O,(r, X) = t. (1.14) 

The remaining  vaxiables not involved in the derivative sign a re  given by finite re la t ions  deduced f r o m  (1.2) and 
(1.8): 

p~ = z..O~, v = Vo(~lo + a2o/Z2), 

a~ = ~2o1(~oz2 + ~2o), P l  = Plo  - -  ~ l o V o ( V  - -  Vo). 

Next we consider  the s t ruc ture  of a plane s ta t ionary shock wave, in which the medium goes f rom an 
initial equil ibrium state (for which a subscr ip t  0 is at tached to the corresponding parameters )  

V =  Vo, Wo = 0 ,  0~o = 01o = i, P2o-~Plo + S  = i  

to a new equilibrium state (indicated by subscr ip t  e) 

V = Ire, W e = O, Oze = 01e = i ,  P2e = P i e  + S / re .  (1.15) 

The values of the pa r ame te r s  in state e a re  determined f rom finite re lat ions according  to the specified initial- 
state p a r a m e t e r s :  

CZ2o, V o, M2o, Plo ,  zlo == z~o = ro ~ 0 o - ~  I .  

On the basis  of (1.15) the r e q u i r e d  relat ions assume the form 

z2~ = P2~ ~= r 7  ~' ~z~oVo(Vo--V~)- - -P~--P~o"  

We consider  the case of small  influence due to capi l lary effects (S<<I) an assumption that is fully justified for 
not too small bubbles (R 0 ~ 1 ram) in application to the experiments  of [2, 3]. Then f rom the foregoing relat ions 
we obtain 

w  C a l c u l a t i o n  o f  t h e  S h o c k  S t r u c t u r e  

To analyze the asymptot ic  behavior of the sys tem in the vicinity of the initial equilibrium state we l inear-  
ize the sys tem with respec t  to the values of the pa ramete r s  at the point O and seek a solution in the form of an 
exponential function decaying as X ~ - c o  (the spatial coordinate of the point O is X=-~o, and the coordinate of 
the point e is X=+r 
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V =  V o - A v  exp(hX),  r =  I + A r exp(hX),  

W = A!v exp (hX),  P~ = t "4- Avl  exp (hX) ,  (2.1) 

z, = t -t- A~, exp (hX), e~ = 1 + Ao, exp (hX) (g = 1, 2), (Re h > 0).  

Af te r  l i n e a r i z a t i o n  the  s y s t e m  of fundamenta l  equat ions  is wr i t t en  

hA,. = AwlVo; (2.2) 

h a w  = (Ap, -F ~zloVoAv - -  4zAw)/Vo;  (2.3) 

[2(~ / V o P e - - h A , ] ;  (2.4) hAp, = 3u L \"~],l=l 

hAe,  = " - -  t hAe,  + 2V2Ao,/Vo Pe; (2.5) 
7 

A t ,  = A~, + As,; (2.6) 

Av = - -  ==0VoA~,, Ap, = - -  aloVoAv, (2.7) 

w h e r e  V~O =On ~ +20~1/77 and Pe =2Rcz . /D~  is the  Pee le t  number .  " 

The solut ion of (2.5) s a t i s fy ing  the  b o u n d a r y  condi t ion (1,14) and the condi t ion of f in i te  t e m p e r a t u r e  at  
the c e n t e r  of  the bubble  has  the f o r m  

AoI = a s h  (~1 c'/2) [~t -1- I3 (V i)/Gl (AB - -  GA,) ,  (2.8) 

w h e r e  

G =  hVoPe/2; B = G t/2 chG 1/'~ - -  shG1/2; 

A = 3(7 " l )A~/[shG t/2 + 3( 7 --  I )B/GI.  

(2.9) 

We have thus obta ined a s i n g l e - p a r a m e t e r  f ami ly  (the pe r tu rba t i on  ampl i tudes  of al l  the p a r a m e t e r s  can 
be e x p r e s s e d  in t e r m s  of one of the ampl i tudes) .  The condi t ion fo r  the ex i s tence  of  a non t r iv ia l  solut ion y ie lds  
the t r a n s c e n d e n t a l  equat ion 

V2h 2 = 3 P c -  37/[i + 3 ( 7 -  i)B1/G] - -4•  , (2.10) 

iin which  B l=G1/2co th  G 1 / 2 - 1 ;  c a p i l l a r y  effects  a r e  neg lec t ed  (S<<I), as  is the m a s s  content  of the gas  phase  
(M20<<1) in the de r iva t ion  of  this  equation.  

F o r  l o w - v i s c o s i t y  l iquids and not  too s m a l l  bubbles  (R 0 ~ 1 ram), in appl ica t ion  to the expe r ime n t s  of 
[2, 3], ~ <<1. We can t h e r e f o r e  d rop  the las t  t e r m  on the r i g h t - h a n d  s ide  of  Eq. (2.10). In this ca se  Eq. (2.10) 
can  be r e w r i t t e n  

�9 [P(~,) = ~, -F B~./(~, ~ - -  A)  -F C(~, 1'2 coth M/2 - -  i) = 0, (2.11) 

w h e r e  h =hVaPe /2 ;  A = (3/4) PePe2; B = (3/4)T Pe2; e =3(T - 1). The funct ion ~p (h) is m e r o m o r p h i c  bec a u s e  ~p 1(~) = 
? , l h  coth  h 1/'z is an ana ly t i c  funct ion.  

F o r  a solut ion of the type  (2.1) only r o o t s  of  (2.11) wi th  a pos i t ive  r e a l  p a r t  a r e  accep tab le .  We now prove  
the ex i s t ence  and un iqueness  of a r o o t  of (2.11) in the r i g h t  ha l f -p lane .  

It is known [8] that  fo r  a m e r o m o r p h i c  funct ion 

N - -  P = A c arg r (2.12) 

w h e r e  N is the n u m b e r  of z e r o s  and P is the n u m b e r  of  poles  in the domain  bounded by a c losed  c u r v e  C. 

We take  the  con tour  i l l u s t r a t ed  in Fig.  1. We compu te  A c a r g ~  p (X) for  this  con tour  as  8--*+ ~o, e ~ 0 :  

(2.13) A c arg q~(~,) -- ALN ~- ANS + ASp -[- h,PL. 

O a t h e a r c  L N a s  8 - - + r  

~(~.) = ~ + 0(~.). (2.14) 

o n  the a r c  SP 

~(~) =~ ( t " B /A  4- Ct3)~ 4- 0(~). 

F r o m  (2.14) and (2.15) we  obtain  for  1 - B / A  + C / 3  ~ 0 

(2.15) 
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s i n c e  r i s  such  tha t  

We i n f e r  f r o m  (2 .12) - (2 .18)  tha t  

ALN + ASp = 0(t);  

ANS arg (p(~,) ---- Apt ̀ arg (p(~,), 

(2.16) 

(2.17) 

r = r (2.18) 

N - -  P ---- - -  Ap L arg r (2.19) 

I n t r o d u c i n g  the  p a r a m e t e r  k = iy2/2 fo r  the  s e g m e n t  OL,  we can  show tha t  

g(y) = (t/C) Re q~(~.) = - -2  + y(sh y A- sin y)/(ch y - -  cos y) ~ 0 (2.20) 

fo r  y = 0. F r o m  (2.14),  (2.15),  (2.19),  and (2.20), i n s e r t i n g  the  v a l u e s  of  A, B, and C and acknowledg ing  tha t  
r h a s  on ly  one p o s i t i v e  X = + ~ in the  r i gh t  h a l f - p l a n e ,  we ob ta in  

F o r  c o m p r e s s i o n  w a v e s  (Pe  > 1) t h e  i n d i c a t e d  roo t  in the  r i g h t  h a l f - p l a n e  e x i s t s  (N = 1). T h i s  roo t ,  
un ique  in  the  r i g h t  h a l f - p l a n e ,  of  the  equa t ion  ~p(k) = 0 i s  r e a l ,  b e c a u s e  r  h a s  the  p r o p e r t y  (2.18), whence  we 
i n f e r  tha t  if X i s  a roo t ,  when ~, i s  a l s O a  r o o t  of  t h e o q u a t i o n , r  = 0. T h e  roo t  of Eq. (2.10) i s  found wi th  the  
a id  of a c o m p u t e r .  

T h e  d e p e n d e n c e  of  the  r o o t  of the  (2.10) on the  wave  i n t e n s i t y  P e  i s  g iven  in F ig .  2 fo r  v a r i o u s  P ~ c l e t  
n u m b e r s .  In  the  a d i a b a t i c  c a s e  Eq. (2.10) goes  o v e r  to the  q u a d r a t i c  equa t ion  

N = 0 . 5  [ i  + s g a ( P e  - -  l )  1. 

f r o m  which  i t  i s  c l e a r  tha t  the  i n d i c a t e d  r o o t  e x i s t s  in  the  c a s e  on ly  fo r  P e  > T. Wi th  h e a t  t r a n s f e r  p r e s e n t  the  
roo t  e x i s t s  f o r  a l l  P e  > 1. 
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The integral  curves  of the sys tem of fundamental equations admit shifting along the X axis. We therefore  
fiix a cer ta in  value of the d imensionless  bubble radius r at X = 0, choosing r close enough to  unity so that a 
l inear solution will hold in the domain X _<0. We then determine the values of the other pa ramete r s  at X=0 
f rom (2.2)-(2.9) on the basis  of the perturbat ion amplitude of the bubble radius and the value of the root  of Eq. 

(2.10). 

These quantities determine the initial conditions for numer ica l  solution of the nonlinear problem in the 
domain X > 0. The problem is solved b y a  f ini te-difference method in Lagrangianvar iab les ;  the interior of the 
bubble is par t i t ioned into spher ica l  l ayers ,  and by analogy with [7] a boundary condition at the surface  in the 
fo rm T2(R, t) =T o is used. The heat-input equation (1.13) now goes over to a sys tem of n ordinary  differential 
equations (where n is the number  of layers) ,  and the continuity equation (1.10) into a sys t em of n algebraic  
e~tuations. In this way we a r r ive  at the Cauchy problem for the sys t em of (n + 3) 0rd inarydi f ferent ia lequat ions  
(1.10)-(1.13). The problem is solved on a computer  by the Runge-Kut t a  method. The number of layers  is 
var ied  and finally chosen on the basis  of the condition that the end resul t s  a re  sca rce ly  affected by increasing 
that number .  �9 - 

The equil ibrium states  before  and after  the shock wave cor respond  to the points O and e, which are  
s ingular i t ies  of the sy s t em of differential equations. An analysis  of the asymptot ic  behavior as X ~ -  ~ is 
n e c e s s a r y  in o rder  to cope with the singulari t ies.  

We have computed var iants  of the shock s t ruc ture  in a 1 : t g l y c e r i n - w a t e r  solution containing air  bubbles 
in application to the experiments  of Noordzij [2] and the corresponding calculations of [6]. 

The following values a re  used for the thermodynamic  p a r a m e t e r s :  

p~0--= 1i26 kg/m s. vl 75. i0 -5 mZ/sec, 

To = 300"K, Cv,= 7i6 m2/sec 2 .24, 
~s = 2.42.t0-Skg.m/secS.'K, y = t.4. 

F igure  3 gives as an example the computed s t ruc ture  of a shock wave with the following values of the 
pa r ame te r s  determining the initial state of the mixture (wave intensity Pe =Pe/P20, wave velocity v 0 given r e l a -  
tive to the medium ahead of the shock front):  

R0 = 1.55 ram, a~0 = 0.0423, 

Po = 0.358bar, Pe = 3.32, 

a,  = 5.64 m/see, V0 = 9.05 (v0 = 50.9 m/see); 

~:he dashed curve  cor responds  to the p re s su re  P~ in the bubbles, and the solid curve to the p re s su re  Pi in the 
liquid. 

It has been shown [5] that in s t rong shocks (Pe ~ 2 or 3) each bubble breaks  into two identical bubbles at 
the instant of the f i rs t  maximum compress ion  of the bubbles. This effect is included in the computations; a 
discontinuity is introduced at the instant of f i rs t  maximum compress ion  of a bubble, where the bubble radius is 
decreased  by a factor  of 2 -1/3 and the r e s t  of the pa ramete r s  are  left unchanged (the radial  velocity of the 
dividing and already divided bubbles at the instant of breakup is equal to zero).  This scheme for taking account 
of the breakup of bubbles in the wave is great ly  simplified. It does not allow for the energy variat ion in the 
sys tem during breakup or  for energy exchange with the wave. However, it does not contradict  the energy 
balance in the sys t em (for the case  in which surface tension can be neglected). Thus, at the instant of maxi-  
mum compress ion  the energy in the sys tem is the sum of the kinetic energy of macroscopic  motion (p 1 +P2) v2/2 
and the bubble internal energy,  which is determined by the p res su re  in them, while the pulsation energy at this 
instant is equal to zero.  The f i r s t  two components of the energy (for fixed values of all other parameters )  do 
not depend on the d i sperseness  of the second phase {bubble sizes),  and the third component is equal to zero  at 
the instant of breakup. 

The shock s t ruc ture  in Fig. 4 is plotted for the following values of the pa ramete r s  (Nu =2RqR/[X2{T 0-  
(T  2} )] is the dimensionless  heat flux, i.e., the Nusselt  number) :  

R0 ----- t.4rhrh, a20 = 0.0246, P0 = 0.902 bar, 

Pe = 1.32, a ,  = 8.95 m/see. Vo = 7.42 (v0 = 66.2 m/see). 
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Figure  3 gives an example of a shock wave with a pulsation s t ruc tu re ,  and Fig. 4 does the same for  a 
monotonic s t ruc ture .  In Fig. 5 we have the t e m p e r a t u r e  distr ibution inside a i r  bubbles in a weak shock wave at 
var ious  dis tances.  

The resu l t s  of the p resen t  study demonst ra te  the applicabil i ty of the approximate  express ions  used in an 
ea r l i e r  paper [6] for the interphase hea t - t r ans fe r  coeff icient  within the context of the two- t empera tu re  model.  
In the case  of a shock wave having a pulsation s t ruc tu re  (see Fig. 3) the dimensionless  :heat flux (Nusselt num-  
ber) a l so  f luctuates ,  even assuming negat ive values  in ce r ta in  t ime  intervals  (due to  the inception of " t e m p e r a -  
tu re  sinks" in the bubble, as shown by Nigmatulin and Khabeev [7]). However,  the pe r iod -ave rage  value of the 
Nusselt  number  and the heat t r ans fe r  between the  bubble and the liquid o n  the average  a r e  w e l l d e s c r i b e d  by the 
approximate  express ion  of [6]. The r a d i u s - t i m e  curves  calculated by means of Eq.  (1,3)and the approximate  
express ions  of [6] prac t ica l ly  coincide (they have the same f requency and pulsation decay rate) .  In the case  of 
a wave having a monotonic s t ruc tu re  the value of the Nusselt  number  initially coincides with the v a lue  used in 
[6] (Nu =30), but t he rea f t e r  it exhibits only o rde r -o f -magn i tude  agreement .  This fact ,  however,  does not incur 
any appreciable  e r r o r s  in the r e su l t s ,  and it pe rmi t s  considerable  simplif icat iun of the computat ions,  an asse t  
that is par t icu la r ly  important  in the study of nonsteady waves.  

The authors  a r e  grateful  to R. I. Nigmatulin for  stating the problem and devoting attentlon to the work; as 
well as to A. G. Pet rov  for a useful discussion.  
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